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Abstract.  Recent developments in advanced quantum chemistry and quantum

chemistry interfaced with model potentials are discussed, with the primary

focus on new implementations in the GAMESS electronic structure suite of

programs.  Applications to solvent effects and surface science are discussed.

1. Introduction

The past decade has seen an extraordinary growth in novel new electronic structure

methods and creative implementations of these methods.  Concurrently, there have been

important advances in “middleware”, software that enables the implementation of

efficient electronic structure algorithms.  Combined with continuing improvements in

computer and interconnect hardware, these advances have extended both the accuracy of

computations and the sizes of molecular systems to which such methods may be applied.

The great majority of the new computational chemistry algorithms have found their way

into one or more broadly distributed electronic structure packages.  Since this work

focuses on new features of the GAMESS (General Atomic and Molecular Electronic

Structure System1) suite of codes, it is important at the outset to recognize the many other

packages that offer both similar and complementary features.  These include ACES2

CADPAC3, DALTON4, GAMESS-UK5, HYPERCHEM6, JAGUAR7, MOLCAS8

MOLPRO9, NWChem10, PQS11, PSI312, Q-Chem13, SPARTAN14, TURBOMOLE15, and

UT-Chem16.  Some1,3,4,10 of these packages are distributed at no cost to all, or to academic

users, while others are commercial packages, but all are generally available to users

without restriction or constraint.  Indeed, the developers of these codes frequently

collaborate to share features, a practice that clearly benefits all of their users.
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 The remainder of this paper is organized as follows.  In Section 2, recently developed

and implemented methods in quantum mechanics (QM) are discussed.   New scalable

methods for correlated wavefunctions are presented in Section 3, and several approaches

for interfacing quantum mechanics with molecular mechanics (MM) are considered in

Section 4.  Conclusions and projections into the future are provided in Section 5.

2. QM Methods

2.1 Variational Methods.  The simplest variational methods are Hartree-Fock (HF) and

density functional theory (DFT), both of which are available in GAMESS.  In principle,

DFT is an exact, ab initio method, but in practice, since one does not know the exact

density, it has become a very successful semi-empirical method, with several parameters

that are fitted either to experiment or to simple models like the non-interacting

homogeneous electron gas.  DFT has been implemented in GAMESS using both the

traditional grid-based approach and a grid-free method, due originally to Almlof17a and

extended by Glaesemann and Gordon17b, that employs the resolution of the identity (RI)

to facilitate formulating  DFT in algebraic form.  Several of the most commonly used

functionals are available in GAMESS, including B3LYP and BLYP.

In the 1950s Löwdin18 showed that a wavefunction that includes all possible excitations

from the reference wavefunction (usually the electronic ground state) is the exact

wavefunction for the given atomic basis.  Therefore, this level of theory, commonly

called full configuration interaction (full CI), is the benchmark against which all

advanced QM methods that include electron correlation may be measured.  Indeed any

level of CI, perturbation theory, or coupled cluster theory can be extracted from a full CI

wavefunction and compared with the exact result.  It is therefore very useful to develop

and implement a full CI method that can be applied to as large an array of atomic and

molecular species as possible.  Such a full CI code based on a determinant, rather than a

configuration, expansion has been developed by Ivanic and Ruedenberg19 and

implemented into GAMESS.
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A special case of full CI is the CASSCF (complete active space self-consistent field) or

FORS (fully optimized reaction space) approach in which one defines an active space of

orbitals and corresponding electrons that are appropriate for a chemical process of

interest20.  The FORS wavefunction is then obtained as a linear combination of all

possible electronic excitations (configurations) from the occupied to the unoccupied

(virtual) orbitals in the active space, so a FORS wavefunction is a full CI within the

specified active space.  Since a full CI provides the exact wavefunction for a given

atomic basis, there is no need to re-optimize the component molecular orbitals.  On the

other hand, a FORS wavefunction generally corresponds to an incomplete CI, in the

sense that only a subset of configuration (or determinant) space is included.  Therefore,

one also optimizes the molecular orbital coefficients to self-consistency.  The calculation

of a full CI wavefunction is extremely computationally demanding, scaling exponentially

with the number of atomic basis functions. Its use is therefore currently limited to either

very small molecules with extended basis sets or molecules of modest size with modest

basis sets.  Therefore, even though new algorithms and computer hardware are expanding

the range of applicability of full CI wavefunction, the FORS/CASSCF multi-

configurational self-consistent-field (MCSCF) method is very powerful for a variety of

applications.  The method is especially important when one encounters near

degeneracies.  There are a great many phenomena in chemistry and related fields in

which near degeneracies occur.  Examples include:

- crossings or near-crossings of potential energy surfaces, in which non-

adiabatic interactions become important;

- diradicals, such as those that occur during bond-breaking processes and near

transition states in chemical reactions;

-  atomic and molecular species that have multiple close-lying electronic states,

such as unsaturated transition metal compounds and high energy metastable

compounds.

Because of the associated resource (e.g., memory and disk) requirements for MCSCF

calculations, the size of the active space is effectively limited to approximately 16 active

electrons in 16 active orbitals.  This seems somewhat limiting at first thought, since such

a (16,16) active space is only slightly larger than a full valence active space for a
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molecule like ethane.  However, in many chemical processes that involve large molecules

only a small number of electrons pairs are changing in any significant manner.  So,

MCSCF methods can frequently be applied to rather large problems, as long as the active

space remains tractable.  In recent years FORS calculations have been applied to such

complex species as 7-azaindole (7AI)21, 7-AI interacting with water in ground and

excited electronic states22, the 7-AI dimer23, large clusters that simulate the Si (100)

surface, including up to five dimers (Si33H28)
24, and the oxidation and etching reaction

mechanisms of these silicon clusters25.  Such large applications are made possible, in

part, by a suite of MCSCF algorithms in GAMESS that render the iterative process more

effective and efficient.  These methods range from very simple first order methods that

have small resource requirements and require more iterations to highly resource-

demanding full Newton-Raphson methods that are rapidly convergent but considerably

more resource-demanding.  A compromise method employs an approximate second order

iterative (SOSCF26) procedure that is the default convergence option in GAMESS.

Even with efficient algorithms, MCSCF calculations eventually run out of steam as the

size of the required active space increases.  In order to expand the sizes of active spaces

that can be included in a molecular calculation, Ivanic has developed and implemented

into GAMESS the ORMAS (occupation restricted multiple active spaces) method27.  In

the spirit of methods like RASSCF (restricted active space SCF28) and QCAS (quasi

CAS)29, ORMAS divides the desired active space into multiple active subspaces that are

chemically separable, thereby expanding the effective size of the orbitals and electrons in

an active space.  The advantage of the ORMAS approach is the complete flexibility in the

number of active spaces and the manner in which they are defined.  Figure 1 illustrates

the efficiency of the ORMAS method on an important biological compound,

oxo(Mn)Salen27.  It is clear from this figure that subdividing the full CASSCF (12,11)

active space six subspaces results in errors on the order of only 1-3 mh in the total energy

and 2 kcal/mol in the dissociation energy for different electronic spin states.  This is

extraordinary, given the fact that ORMAS requires two orders of magnitude fewer

determinants than the full CASSCF!
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Since, as noted above, a full CI provides the exact wavefunction for a given atomic basis,

it is useful to expand the size of molecules for which a full CI wavefunction is accessible.
Because of the large resource demands for full CI calculations, it is therefore important to

devise ways in which one can approach the accuracy of a full CI wavefunction with a
significantly reduced effort.  The Ruedenberg group has devised two approaches that

achieve this goal, both of which have been implemented in GAMESS.  In the first,

Ruedenberg, Ivanic and Bytautas have used the full CI code and a systematic analysis of
single, double, triple, … excitations to develop a general method for eliminating the

“deadwood” from the full CI wavefunction30.  Making use of localized MCSCF orbitals
(LMOs), they have shown for several test cases that roughly 90% of the configurations in

a full CI list can be eliminated while retaining millihartree accuracy.  Figure 2 illustrates

the effectiveness of this approach by comparing the model energies vs. the known
CCSD(T) correlation energies for 38 small to moderate size molecules, with a mean

absolute deviation of less than 3 mh.  The error in relative energies, for example for

 chemical reactions, is likely to be much less.

The use of localized orbitals leads to the recognition that interactions that are further from

each other than vicinal (three bonds) can be safely ignored in a correlation calculation.

The extension of a general CI method such as that developed by the Ruedenberg group to

a general MCSCF method in which the molecular orbital coefficients, as well as the CI

coefficients, is non-trivial, but it has been accomplished and implemented into GAMESS

in collaboration with the Ruedenberg group31.  It is important to recognize that there are

clear advantages and some disadvantages to the general MCSCF approach.  The obvious

advantage is the dramatic reduction in computation time that one attains by eliminating

most of the configurations.  What one gives up in this approach is the built-in size-

consistency that is guaranteed by the complete active space approach.  Until the method

has been extensively tested, it is not clear how serious a matter this is.  Indeed, it is

possible that eliminating essentially non-contributing configurations has only a small

effect on size-consistency.  Similarly, it is not clear how the MCSCF convergence will be

affected when a complete active space is not used, but one suspects that the use of less

than a FORS active space will lead to deterioration of the MCSCF convergence.
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An alternative approach to achieving full CI at a reduced computational cost has been

developed by Bytautas and Ruedenberg32.  This method is built upon a careful analysis of

single, double, triple, … excitations, and the observation of nearly linear relationships

between lower and higher excitations.  These linear relationships allow one to use

extrapolation techniques to very accurately predict the energies due to higher excitations

without performing the actual calculations.  The impact of this method is that one can

predict the full CI energy for a given atomic basis to sub millihartree accuracy.

Combined with an extrapolation to the complete basis set limit, this method is capable of

predicting bond energies to within chemical (1 kcal/mol) accuracy.  The method has

already been applied to the first row homonuclear diatomics32.

In general, an MCSCF calculation is based on a compact active space and provides the

correct zeroth order wavefunction for a chemical process, such as bond dissociation or a

more complex chemical reaction.  In this sense, the MCSCF wavefunction may be

thought of as a replacement for Hartree-Fock (HF) when a single electron configuration

cannot provide a qualitatively correct description of a process of interest.  That is, an

MCSCF calculation accounts only for “non-dynamic” correlation.  To obtain accurate

energies, and sometimes accurate molecular structures, one must add dynamic

correlation, just as one must add dynamic correlation to a HF wavefunction when

accurate structures and energies are desired.  Several methods are available in GAMESS

for recovering dynamic correlation on top of MCSCF wavefunctions.  These include

multi-reference (MR) configuration interaction (MRCI) and multi-reference second order

perturbation theory (MRPT2).  The MRCI wavefunctions can include either single or

single and double excitations out of the active space, referred to as first and second order

CI, respectively.  These methods may be applied to both FORS and ORMAS

wavefunctions.  The version of MRPT2 in GAMESS is that developed by Hirao, Nakano

and co-workers.  When only one electronic state is included in the calculation, the

method is referred to as MRMP233.  For multiple state calculations, the appropriate

method is second order quasi-degenerate perturbation theory (MCQDPT234).  A multi-

reference perturbation theory that is built upon ORMAS wavefunctions is in progress.
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Whereas both FORS and full CI wavefunctions are size consistent and size extensive,

none of these multi-reference methods for recovering dynamic correlation have this

property.  Interestingly, it appears that both the choice of the unperturbed Hamiltonian H0

and the manner in which the excitations are included (configuration state functions (CSF)

vs. internally contracted configurations (ICC)) impacts how close to size consistency a

particular MRPT method is.  The ICC approach appears to provide a much more nearly

size consistent result than does the choice of CSF35.  The MRMP2 and MCQDPT2

methods in GAMESS are based on CSFs.

2.2 Many-Body Methods. All of the methods discussed above are based on a multi-

reference (MR) approach to obtaining wavefunctions and properties.  Such MR

approaches are often necessary, because many chemical problems involve species with

considerable configurational mixing due the existence of near degeneracies (diradical

character).  However, the amount of diradical character in a chemical system can span a

very broad range, from essentially zero (e.g., HOMO occupancy ~2, LUMO occupancy

~0) to fully diradical (HOMO occupancy ~1, LUMO occupancy ~1).  As one approaches

fully diradical character, all single reference methods break down, but they do not break

down at the same rate as one approaches this limit.  In particular, there is considerable

evidence that coupled cluster (CC) methods, particularly those like CCSD(T) that

incorporate a triples correction, can overcome the deficiency of a single reference

wavefunction for problems with non-trivial diradical character.  This has been

demonstrated, for example, by examining the N2 dissociation curves for MP2 and

CCSD(T) vs. various MR methods36.  The breakdown in the CCSD(T) calculation

appears much later in the dissociation process than does the MP2 breakdown.  Recent

developments by Piecuch and co-workers37 are particularly exciting, since they extend

this breakdown even further out in the dissociation curve..  Termed re-normalized and

completely re-normalized methods (e.g., R-CCSD(T) and CR-CCSD(T)), these methods

are designed to account for an increasing amount of diradical character.  Although they

do eventually break down at large distances for multiple bonds, they are clearly more

robust for intermediate cases.  The full suite of closed shell CC, R-CC and CR-CC

methods are now available in GAMESS.  Since the coupled cluster methods are not fully
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variational, one must use the relaxed density38 that requires the gradient of the

wavefuction (non-Hellman-Feynman term) to evaluate molecular properties such as the

dipole moment and electrostatic potential.  The formulation of the relaxed density is very

similar to that of the energy gradient, so the evaluation of properties is considerably more

complex for non-variational methods than is it for variational methods.  The Piecuch

group has completed the derivation and coding of the relaxed density and associated

properties for the coupled cluster and renormalized coupled cluster methods39.  These

new features will be in a new GAMESS release shortly.

Even though single reference second order perturbation theory (MP2) cannot describe

bond breaking very well, this level of theory is still the most efficient ab initio approach

that includes electron correlation40.  For closed shells, the restricted MP2 energy is the

standard choice, while for open shells there are two possible choices, unrestricted and

restricted MP2.  Unrestricted methods (UMP2) have the advantage that the orbitals and

orbital energies are well defined, but these methods are generally not spin correct.  It is

common to encounter modest “spin contamination”, in which the spin expectation value

differs from the correct value by 0.05 – 0.1. However, during bond breaking processes,

this deviation can become very large, so that the identity of the spin state is effectively

lost.  The orbitals and orbital energies in restricted open shell Hartree-Fock are not

uniquely defined.  Consequently, there are several ways in which restricted open shell

second order perturbation theory can be formulated.  The most popular of these methods,

referred to as RMP2 was independently developed by Bartlett and co-workers41 and

Pople, Handy and co-workers42.  This method is spin correct only through second order in

the energy.  A more complex and more rigorously spin correct method, called Z-averaged

perturbation theory (ZAPT2), was developed by Lee and Jayatilaka43.  Both methods are

available in GAMESS, while the default is ZAPT2.

2.3 Excited States, Non-Adiabatic and Relativistic Methods.

The simplest approach to the calculation of excited electronic states is to perform a

singles configuration interaction (CIS) calculation.  While the accuracy of CIS is limited,

especially if an excited state of interest has significant contributions from doubly excited
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configurations, such as charge transfer states, it is a computationally efficient method that

can frequently provide at least useful qualitative trends correctly.  The new CIS code in

GAMESS (developed by Webb44) provides energies and analytic gradients, so one can

predict excited state geometries, determine transition states, and follow reaction paths at

this level of theory with approximately the computational cost of Hartree-Fock.  At the

other end of the computational complexity spectrum, one can use the full CI option to

obtain energies and wavefunctions for both ground and excited states.  While this level of

theory provides the exact wavefunction for the atomic basis used, it is generally limited

to atoms and small molecules.  For this reason, the Bytautas-Ruedenberg method for

extrapolating to the full CI solution is very exciting, since the computational complexity

is reduced by several orders of magnitude.  As noted in Section 2.1, this method is

capable of predicting ground state dissociation energies of diatomic molecules to within

chemical accuracy.  The ability of this method to predict full potential energy curves and

surfaces is currently under investigation, and the ability of this method to treat excited

states with equivalent accuracy is promising.

There are several choices for excited state calculations that are intermediate in accuracy

and computational complexity between singles CI and full CI.  These include the

MCSCF, multi-reference CI (called first order or second order CI in GAMESS) and

second order multi-reference perturbation theory methods discussed above.  Excited

states may be analyzed for each of these methods simply by requesting multiple roots.

The most recent excited state method to be implemented in GAMESS is the suite of

equations-of-motion (EOM) coupled cluster methods that have been developed by

Piecuch and co-workers37a,45.  EOM-CCSD and EOM-CCSD(T) and their completely

renormalized analogs (using the method of moments to obtain triples corrections) are

available.  The EOM methods are usually initiated by performing a CI singles (CIS)

calculation to obtain the starting wavefunction.  This can be somewhat limiting if the

state(s) of interest have significant contributions from two-electron excitations.  Using a

full singles + doubles CI (CISD) would be prohibitively expensive in most cases.  The

EOM-CC implementation in GAMESS permits an alternative approach called CISd, in

which a subset of double excitations is added to the CIS wavefunction.  The choice of
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which double excitations to include is flexible, but the most sensible approach is to treat

the choice of doubles in a manner that is similar to choosing an MCSCF active space.

That is, one would choose that subset of orbitals that are most likely to be involved in the

excited state(s) of interest.

While the electronic ground state is usually, although not always, well separated from

excited electronic states, there are frequently multiple excited states within a small energy

gap.  When electronic states come close to, or cross, each other, the adiabatic assumption

can break down.  Non-adiabatic effects can be manifested in either spin-orbit coupling (a

fundamentally relativistic effect) or derivative (sometimes called vibronic) coupling.  The

former phenomenon arises from the interactions of orbital angular momentum and the

magnetic moment due to spin, while the latter derives from a breakdown in the Born-

Oppenheimer approximation according to which one ignores the changes in the electronic

wavefunction that are induced by nuclear motion.  Several methods for dealing with spin-

orbit coupling have been implemented in GAMESS, while derivative coupling codes are

planned for the near future.

The array of methods in GAMESS for treating spin-orbit coupling effects has recently

been the subject of two reviews46,47.  These methods include the full Breit-Pauli spin-orbit

operator and approximations to it, primarily developed by Koseki and Fedorov.  All of

the methods require a multi-reference wavefunction as a starting point.  This can be

MCSCF, first or second order CI or MRPT2.  The simplest method is a semi-empirical

Breit-Pauli implementation, in which the most time-consuming two-electron part of the

spin-orbit operator is neglected.  This approximation is made viable by replacing the

nuclear charge Z in the one-electron operator by an effective nuclear charge Zeff that is

fitted to atomic spectra.  This method has been parametrized for virtually the entire

periodic table, for both all electron and effective core potential basis sets, and then

applied to a number of interesting probems48.  Of course, the accuracy of this semi-

empirical approach is inherently limited.  For greater accuracy, one can use the full Breit-

Pauli approach in which both one- and two-electron operators are included.  An

interesting and effective compromise is the partial two-electron (P2E) method49, in which
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only the core-valence two-electron term is included.  This method is accurate because the

core-valence term is the most important one, and it is computationally efficient because

this term can be reformulated to resemble an effective one-electron interaction.

Scalar relativistic effects (e.g., mass-velocity and Darwin-type effects) can be

incorporated into a calculation in two ways.  One of these is simply to employ effective

core potentials (ECPs), since the core potentials are obtained from calculations that

include scalar relativistic terms50.  This may not be adequate for the heavier elements.

Scalar relativity can be variationally treated by the Douglas-Kroll (DK)51 method, in

which the full four-component relativistic ansatz is reduced to a single component

equation.  In GAMESS, the DK method is available through third order and may be used

with any available type of wavefunction.

2.4 Properties related to nuclear energy derivatives. Analytic energy derivatives are as

important as the energies themselves.  One needs first derivatives for geometry

optimizations, reaction path following, dynamics simulations, and (if analytic second

derivatives are not available) second derivatives via finite differencing.  Second

derivatives are necessary for the computation of vibrational frequencies and,

subsequently, thermodynamic properties via the appropriate partition functions.

Analytic first derivatives (gradients) are available in GAMESS for open and closed shell

Hartree-Fock, open and closed shell density functional theory, GVB (generalized valence

bond), MCSCF and ORMAS, CIS, and MP2 for closed and (unrestricted) open shells.

Analytic second derivatives (Hessians) are available for open and closed shell HF, GVB

and MCSCF wavefunctions.  One can also calculate Hessians using numerical finite

differencing of analytic gradients using any method for which analytic gradients are

available.  Fully numerical first and second derivative codes have very recently been

implemented, so one can optimize molecular geometries with any level of theory.  Fully

numerical derivatives are inherently less efficient than analytic derivatives, however, the

numerical derivatives are more amenable to very efficient coarse-grained parallel

computing.
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The most common method for determining vibrational frequencies is the normal mode

analysis, based on the harmonic force constant matrix of energy second derivatives

(Hessians).  Of course, vibrations are not truly harmonic, and the anharmonicity generally

increases as the frequency of the vibration (steepness of the potential) decreases.  That is,

the more anharmonic a motion is, the less applicable is the traditional approach to

determining vibrational frequencies.  In such cases, one can use the vibrational self-

consistent field (VSCF) method to obtain anharmonic frequencies52,53,54.  This method

uses energies and gradients along a given normal mode direction to obtain the

anharmonic cubic and quartic terms.  In analogy with electronic structure theory, the

VSCF method can be augmented by a CI or perturbation theory, in order to obtain

improved vibrational frequencies.  The VSCF and related methods in GAMESS have

been developed by Chaban, Matsunaga, and Taketsugu.

Energy derivatives are essential for the computation of dynamics properties.  There are

several dynamics-related methods available in GAMESS.  The intrinsic reaction

coordinate (IRC) or minimum energy path (MEP) follows the infinitely damped path

from a first order saddle point (transition state) to the minima connected to that transition

state.  In addition to providing an analysis of the process by which a chemical reaction

occurs (e.g., evolution of geometric structure and wavefunction), the IRC is a common

starting point for the study of dynamics.  Example are variational transition state theory

(VTST55) and the modified Shepard interpolation method developed by Collins and co-

workers56.  Indeed, interfaces are maintained between GAMESS and the VTST codes

(GAMESS-PLUS)57 and between GAMESS and the Collins Grow code (GAMESS-

Grow)58.  The GAMESS-Grow interface, in particular, benefits greatly from the

availability of analytic energy derivatives.  Since Grow builds global potential energy

surfaces and GAMESS has multi-state capability via its multi-reference methods, this

interface can build multiple potential energy surfaces, a precursor for the dynamical

analysis of such phenomena as conical intersections.
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In addition to the IRC functionality, GAMESS also has a direct dynamics capability, the

dynamic reaction path, DRC59.  The DRC allows one to perform dynamics “on-the-fly”,

by performing classical trajectories at any level of theory for which analytic gradients are

available.  One can, for example, put an amount of energy equal to n quanta into any

vibrational mode(s), in order to model mode specific chemistry.

The gradient extremal is another trajectory, available in GAMESS, defined as that curve

for which the nuclear gradient vector is an eigenvector of the nuclear Hessian60.  Gradient

extremals may lead from minima to any of the following: dissociation products, minima,

transition states, or higher order saddle points (stationary points); or united atom

collisions.  For small numbers of atoms, tracing all gradient extremals may lead to a

global understanding of all relevant parts of the potential energy surface61.

2.5 Other Properties

Although the generation of wavefunctions and corresponding potential energy surfaces is

the primary use for quantum chemistry, other molecular properties are also of interest.  In

addition to the set of electrostatic properties and localized orbitals described earlier,

GAMESS now contains a number of other useful properties or analysis procedures.

Analytic computation of IR intensities62 and numerical computation of Raman

intensities63 for the harmonic vibrational spectra have been programmed.  The analytic

computation64 of closed shell static or frequency dependent polarizabilities is possible,

and numerical computation65 of the static polarizabilities of most wavefunctions can be

performed.  A program to explore solvent effects on NMR shifts has been developed66.

Analysis of molecular wavefunctions is less directly tied to experiment but is of

considerable interest to chemists looking for trends or explanations.  Atomic charges are

of considerable interest to force field developers, and a procedure for fitting them to the

computed electrostatic potential and total molecular dipole and quadrupole is available67.

The localized orbital programs have been extended to include a detailed orbital analysis
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of energy contributions, called the Localized Charge Distribution, available for closed

shell SCF and MP2 wavefunctions68.  As part of the EFP solvent project (see below), the

Stone distributed multipole analysis69 and the Kitaura-Morokuma or Stevens-Fink dimer

energy analysis70 have been added, and generalized to any number of weakly interacting

monomers.

3. Scalable Electronic Structure Theory

One approach to growing the size of a chemical system that can be realistically treated by

the most sophisticated electronic structure methods is to devise new methods that are

inherently more efficient, as discussed in the previous section.  Another, complementary

approach is to devise algorithms in such a manner that the calculations are scalable; that

is, the computationally most demanding tasks may be distributed among whatever

processors are available.  Often referred to as parallel programming, this approach is

relatively straightforward for low-level methods like Hartree-Fock and density functional

theory energies and gradients using a replicated data (RD) algorithm, in which the

necessary data is either replicated on each available processor (e.g., density and Fock

matrices) or recomputed on the fly each iteration (e.g., “direct” calculation of the two-

electron integrals).  However, the design of scalable algorithms becomes increasingly

complicated for the more sophisticated, correlated methods.  The disadvantage of the RD

approach is that although a calculation proceeds more rapidly than it would on a single

processor, the feasible size of a chemical system is limited by the amount of memory and

disk on the smallest node. Therefore, the RD approach is sensible when only two-

dimensional matrices are involved, but becomes much less viable for correlated methods

for which the four-dimensional electron repulsion integrals must be manipulated (i.e.,

transformed between the AO and MO basis).

A major advance in the manner in which QM (especially correlated QM) calculations

may be performed on parallel computers was provided by the development at PNNL of

the global array (GA) tools71, a one-sided message passing library that facilitates the

distribution of large sets of data across all available nodes.  The development of the
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distributed data interface (DDI)72 in GAMESS, initially led by Fletcher and more recently

by Olson, benefited considerably from the prior development of GA technology.  DDI

performs best when it can take advantage of the SHMEM library, especially on Cray or

SGI systems, but it has also been very successful on IBM computers running under LAPI

and clusters of UNIX and Linux computers.  The point-to-point messages required for the

implementation of DDI on such hardware are carried by TCP/IP socket messages or,

sometimes, an MPI-1 library. In a related development, DDI now makes optimal use of

the processors in an SMP box by avoiding message passing between CPUs in a given

node73, by using System V memory regions accessible by all processes within a

multiprocessor node.

The initial implementation of DDI was for closed shell MP2 energies and gradients74.

This has been extremely successful. As long as the size of the system of interest is

increased as the number of CPUs is increased, the method scales almost linearly up

through 512 T3E processors75.  For species with unpaired electrons, the implementation

of restricted open shell energies is equally efficient, and the UMP2 energy and gradient

code76 scales as well as the closed shell analog.  Restricted open shell gradients using the

ZAPT ansatz have been derived43d, and the coding of both sequential and parallel codes

is in progress.  DDI has also been used to develop a distributed parallel MR second order

perturbation method in collaboration with the Koseki group77.  It appears that the parallel

MRMP2 method currently scales well up to about 32 processors.  Of course, the most

demanding many-body method in GAMESS is the set of coupled cluster methods.  The

coupled cluster codes in GAMESS are currently sequential, but the development of

parallel coupled cluster methods is in progress.

Since MCSCF is an important starting point for so many chemical problems, it is very

important to develop parallel MCSCF methods as well.  The initial attempt at this was a

RD approach which scaled well only to ~4-8 processors78.  Very recently, a DD parallel

MCSCF algorithm has been developed using the full Newton-Raphson convergence

algorithm79.  This DD MCSCF method addresses the integral transformation and orbital

rotation steps, but not the CI coefficient optimization, which is discussed below.  Initial
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tests suggest that this algorithm will scale well up to ~32-64 processors, a major advance

over the RD algorithm.  Particularly exciting is the very recent implementation of a

parallel MCSCF analytic Hessian code80.  Analytic derivatives are generally preferable to

numerical finite differencing schemes, and this is especially so for MCSCF

wavefunctions.  The reason for this is that numerical schemes usually decrease the

molecular symmetry upon some subset of the coordinate displacements.  Even for high

symmetry species, some displacements reduce the symmetry all the way down to C1.  So,

for example, if one is interested in an excited state that belongs to an irreducible

representation that is different from that of the ground state (say, 1B2 vs. 1A1 in C2v

symmetry), both states will become 1A in C1 symmetry.  Because of this, one will

frequently encounter root flipping during a numerical Hessian calculation, such that the
1B2 state flips to the 1A1 state when the symmetry is reduced to C1.  This is avoided if the

Hessian calculation is done analytically.  The implementation of an analytic Hessian code

is also an important step in the development of a derivative (i.e., vibronic) coupling code

that is in progress.  Derivative coupling plays an important role in the chemistry and

physics of excited states, since the crossing of potential energy surfaces and the

associated conical intersections are common phenomena in photochemistry, photophysics

and photobiology.  Since excited state calculations can be very computationally intensive,

especially for molecules that are important in biochemistry, the availability of an MCSCF

Hessian code that scales well with the number of processors is also important.  The

scalability of the MCSCF analytic Hessian code in GAMESS, developed by Dudley, is

illustrated in Figure 3 for H2C4O, using a 10 electrons in 9 orbitals active space.

As noted in the Introduction, the ultimate wavefunction for a given basis is the full CI

wavefunction, so it is important to extend the sizes of chemical species that can be

realistically approached using full CI.  Equally important is the recognition that a full CI

within a specified set of orbitals and corresponding electrons is just a FORS/CASSCF

wavefunction.  So, the development of a scalable Full CI method serves a dual purpose.

Both RD and DD full CI codes have been developed and implemented into GAMESS by

Gan81.  The algorithm uses a CI driven approach, in which communication is controlled

by a string-driven method.  The success of the DD/FCI method is especially encouraging,
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as is illustrated in Figure 4.  This figure demonstrates a test on a cluster of 64-bit IBM

Power 3II dual processor computers running AIX.  The illustrated problems are CH3OH

(14,14) and H2O2 (14,15), where the numbers in parentheses signify the number of

electrons and orbitals, respectively.  These problems include ~11,800,000 and 40,400,000

determinants, respectively, and the scalability through 32 processors is excellent.  Similar

performance is observed on Linux clusters up through the 16 processors that were

available for testing.

One can think of the parallel methods discussed above as fine-grained parallelism, in that

each subtask in a single energy or energy + gradient evaluation is individually distributed

among available processors.  There are also problems for which a very coarse-grained

approach is appropriate.  Examples are the computation of numerical derivatives (e.g.,

gradients and Hessians) for which each displaced geometry is separate from the others,

and all displacements may be identified at the beginning of the calculation.  Other

examples are multiple Monte Carlo simulations and multiple classical trajectories, since

the associated energy and gradient evaluations are independent of one another.  A

development underway in GAMESS is the GDDI (generalized DDI) method which

makes use of the concept of groups and subgroups (in a computational science sense) to

make use of both fine-grained and coarse-grained parallelism82.  For example, if one

wishes to perform a CCSD(T) fully numerical Hessian, one can distribute the large

number of CCSD(T) energy evaluations among all available nodes.  At the same time, if

each node is a multi-processor (e.g., SMP) computer, each CCSD(T) energy calculation

can itself, in principle be distributed among the processors on its node.

Of course parallel algorithms are only one way in which one can improve the scalability

of a particular method.  Two other approaches that have recently been implemented into

GAMESS are linear scaling methods for HF and DFT83 and the fragment molecular

orbital (FMO) method84.  Linear scaling methods are based on the premise that the

further away atoms are from each other, the more their mutual interactions become

similar to classical electrostatic interactions that can be accounted for by multipolar

expansions.  The key is to be able to devise a procedure in which the linear scaling

interaction is turned on when it is appropriate.  Among the leaders in this field have been
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Head-Gordon85, Scuseria86, and others87.  The algorithm in GAMESS, developed by

Choi, follows the lead of Wilhite and Head-Gordon85, but implements an optimization

scheme that determines the optimal parameters in a self-consistent manner, depending on

the desired accuracy.  The latter is an input parameter, so that one can design the

accuracy to fit the application.  The linear scaling method in GAMESS is also scalable in

the parallel sense, with nearly linear scaling with the number of processors up to at least

16 nodes83b.

The basic idea of the FMO method is to take advantage of the observation that exchange

interactions and self-consistency in molecular calculations are generally local

phenomena.  This is even more true for extended systems, such as clusters, crystals and

polymers.  This locality permits one to treat interactions between remote parts of a

system by purely Coulombic operators, ignoring exchange interactions.  One can

therefore perform the usual quantum calculations on separate units (fragments) in the

near field regions, while fragment-fragment interactions are reduced to Coulombic

interactions.  In practice, one divides the system of interest into fragments and performs

n-mer calculations of these fragments in the Coulomb field of the other fragments.  There

are no empirical parameters, and the only approximation is the fragmentation itself.  So,

in this sense, there are common features with the linear scaling method discussed in the

previous paragraph.  The fragmentation scheme introduces little error as long as the

fragments are chosen in a physically sensible manner.  The most important impact on

accuracy is the size of the fragments.  The FMO method has been enabled by Fedorov for

SCF84b, DFT84c, and MP284d methods at present.  Parallelization of the FMO method is

implemented by assigning each monomer, dimer, or trimer computation to a subgroup of

the full processor set84a.

4. QM/MM Methods

Even with the most clever and efficient methods and scalable algorithms, as the size of

the system of interest grows, sooner or later the available compute power is not up to the

task if one uses fully QM methods, especially correlated ones.  Two important areas of

research that fall into this category are solvent effects (more generally liquid behavior)
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and surface science.  An effective alternative to fully QM methods is the combination of

QM with molecular mechanics (MM) methodology.  MM is a term that generally

suggests that one is using classical techniques with no wavefunction; such methods vary

broadly in sophistication.  Two types of MM methods that are very different in their level

of sophistication are discussed here.

4.1 Discrete Solvent Approaches. The approach taken in GAMESS to study solvation is a

multi-layer one in which the innermost layer consists of the solute plus some number of

solvent molecules that one feels must be treated with explicit QM.  Examples of the latter

are water molecules that act as conduits in H-transfer reactions.  The second layer

consists of a sophisticated potential, the effective fragment potential (EFP) that is derived

from rigorous QM88.  The outermost layer is represented by a reliable continuum method

to represent the bulk liquid.  In its original EFP1/HF version, this method described

solvent molecules (i.e., water) by three terms that are added to the QM (i.e., HF)

Hamiltonian.  The first term represents the Coulomb interactions by a distributed

multipole analysis (DMA) expanded through octopoles.  The entire Coulomb term is

multiplied by a distance-dependent cutoff to account for overlapping charge distributions.

The second, induction, term accounts for the polarization of charge densities in a self-

consistent manner using localized molecular orbitals (LMOs).  The third term is fitted to

the remainder of the HF water dimer potential, determined from 192 points on the dimer

surface, after subtracting the Coulomb and induction contributions.  This remainder

represents exchange repulsion and (implicitly) charge transfer.  This EFP1/HF method

has been very successful for problems that are well described by the HF method, but it is

limited in two respects.  First, HF includes no electron correlation which invades all of

the terms mentioned above and introduces entirely new interactions, most notably

dispersion.  Second, the process of fitting to obtain the exchange repulsion/charge

transfer term is not something one wants to do for every solvent or liquid of interest.

The first of these limitations has been partially addressed by reformulating the EFP1

approach with density functional theory (DFT), using the popular B3LYP functional89.

Denoted EFP1/DFT, this method, developed by Adamovic, includes some correlation,

although not long-range dispersion, and therefore produces much better binding energies,
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for example, in water clusters.  So, this approach only partially accounts for the

correlation problem.  Likewise, an MP2 EFP1 analog has been developed by Song in a

similar manner, except that the dispersion contribution is fitted in a separate term using

the usual Cn/R
n expansion90.   So far, only the fragment-fragment interaction has been

coded, while the fragment-QM interaction is in progress.  So far, the EFP1/MP2 method

looks very promising: A molecular dynamics simulation using this method maps almost

exactly onto the experimental g(OO), g(OH) and g(HH) spectra, whereas the EFP1/HF

method does very poorly and EFP1/DFT not nearly as well as EFP1/MP2.91  A parallel

code has also been developed by Netzloff for all of the EFP1 methods.  The scaling is

very good as long as a sufficient number of fragments is included in the calculation.

All of the EFP1 methods involve fitting the repulsive and dispersion terms, so it is

difficult to extend the method to other species, such as solvents that may be of interest to

organic or inorganic chemists.  In this sense, it is desirable to derive the exchange

repulsion, dispersion, and charge transfer from “first principles” instead of employing

fitting procedures.  This has been accomplished for the exchange repulsion by expanding

this interaction as a power series in the intermolecular overlap.  This is not a new idea,

but combining this approach with highly transferable LMOs to calculate these integrals

and the related intermolecular kinetic energy integrals has been very successful for a

wide variety of solvents88.  The exchange repulsion calculated by this method maps the

exact HF intermolecular exchange typically to within 0.5 kcal/mol.  More recently, the

dispersion interaction has been derived by Adamovic, again from first principles, based

on the frequency-dependent polarizabilities in the imaginary frequency range obtained

from the time-dependent Hartree-Fock method.92  In keeping with the other terms in the

interaction energy, the dispersion is obtained in a distributed manner, by summing over

individual interactions between localized molecular orbitals located on the two

interacting fragments to obtain the final C6 terms.  Combined with an estimate of the C8

term, this provides an accurate evaluation of the dispersion energy.  An important feature

of this new EFP2 implementation is that one can generate an effective fragment for any

species, simply by performing a single “MAKEFP” run to generate all of the pieces for a

given fragment.  Indeed, performing calculations on mixed species (e.g., methanol-water)
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is just as simple, because no parameter fits are required.  At this time, EFP2 is primarily

an EFP only method, since not all of the QM-EFP interactions have been developed, but

these terms are in progress.  In addition, the EFP2 method has been extended by Jensen

and co-workers93 to the treatment of intramolecular covalent interactions, in addition to

intermolecular interactions.  This is accomplished by interfacing a “buffer region”

constructed from frozen localized orbitals that connects the QM part of the molecule with

the EFP part.  This allows one to study very large molecules (e.g., proteins and polymers)

by treating the “action region” with quantum mechanics and the remainder of the system

with EFP.  This is similar to traditional QM/MM methods, except that the EFP provides a

much more sophisticated classical potential that captures most of the physics.

Although the cost of an EFP calculation is several orders of magnitude smaller than that

of a corresponding QM (e.g., HF, DFT, MP2) calculation, the cost can rise considerably

if one incorporates a large number of solvent molecules. This cost reflects not only the

inherent cost of a single energy + gradient calculation, but also the fact that the number of

arrangements of solvent or liquid molecules expands rapidly with the number of

molecules. To put this in context, a molecular dynamics run to predict bulk properties of

some species should include at least 64 molecules, and 256-512 molecules is considered

to be more realistic.  As another example, the process of finding a global minimum for

some reacting system that consists of a QM “solute” and some number of solvent

molecules requires a Monte Carlo or similar calculation that frequently requires tens of

thousands of energy evaluations, plus geometry optimizations at a subset of these points.

Both Monte Carlo/simulated annealing94 and molecular dynamics95 codes have been

implemented in GAMESS, combined with the EFP methods.  To make such calculations

more feasible for several hundred fragments, each term in the EFP method has been made

scalable by Netzloff96.  As for any other application, the scalability relies on the size of

the problem: the larger the system, the more effective in the parallel code.  There are two

scalability considerations with the EFP code.  One is the inherent scaling of the EFP code

itself.  The other is the composite scalability of a QM + EFP calculation.   For small

numbers of water molecules, the pure EFP calculation does not scale very well, since the

time requirements are very small.  However, the scalability on up to 16 processors
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improves dramatically as the number of EFPs increases96.  When a QM molecule is

present, the inherent QM scalability1 plus the greater CPU demands of the QM part cause

the scalability to improve for even relatively small numbers of solvent molecules.

4.2 Surface Chemistry. For surface chemistry, a more traditional QM/MM approach,

SIMOMM97 (surface integrated molecular orbital molecular mechanics), has been

developed and implemented in GAMESS.  SIMOMM is an embedded cluster approach in

which the QM part of the system is embedded into a much larger MM cluster to represent

the bulk.  Any level of QM theory in GAMESS can be used for the QM part, while the

TINKER98 code is used for the MM part.  The interface between the QM and MM parts is

represented by link atoms that appear in the QM part (typically as hydrogens, although

this is not a requirement) and in the MM part as the actual surface atoms of interest.

Gradients for both the QM and MM methods are generally available, so full geometry

optimizations are both feasible and recommended.  The method has been most

extensively applied to problems that involve the Si(100) surface, including addition of

organic molecules to the surface99, etching25, and diffusion of metal atoms along the

surface100.  More recently, it has been applied to the growth of diamond101 and silicon

carbide102 surfaces.

4.3 Continuum Solvent Methods. As noted above, solvent effects may be modeled in

GAMESS as discrete solvent molecules using the EFP model.  Continuum solution

models are also useful, in that these remove the solvent structural problem completely (no

need to sample many solvent minima structures).  The most sophisticated continuum

solvent model in GAMESS is the Polarizable Continuum Model (PCM) of Tomasi and

coworkers, which models the molecule as a space-filling surface surrounded by

continuum103.  PCM permits the computation of the effect of solvation on the energy104,

nuclear gradients105, and even frequency dependent polarizibilities106.  The present PCM

implementation has been greatly extended by the Jensen group, to use the conductor-like

PCM model107, and to treat all SCF wavefunctions from RHF to MCSCF and their DFT

counterparts.  The numerical solution of the Poisson equation to obtain apparent surface

charges has been made possible for large systems by using an iterative linear equation

solver108.  Numerically stable nuclear gradients have been obtained by using an “area
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scaling” tessellation109 that deals with surface elements that are too close to each other by

rescaling their sizes, permitting the study of solute geometry optimization.  The PCM

computations just described are enabled for parallel computation108, and they have been

interfaced with the effective fragment potential110.

Two other approaches are used less often.  The original SCRF spherical cavity model111

is less preferable than the space filling cavity used in the PCM code.  The COSMO model

has been implemented in GAMESS to describe the electrostsatic interactions between the

solute and the continuum, for RHF and its corresponding MP2112.

5. SUMMARY AND PROGNOSIS

The focus of this paper has been on the new developments in electronic structure theory

during the past decade.  These developments include new methods in quantum

mechanics, including approaches for extrapolating to the full CI and complete basis set

limits, novel methods for CASSCF calculations, new coupled cluster techniques, methods

for evaluating non-adiabatic and relativistic interactions, new approaches for distributed

parallel computing, and QM/MM methods for describing solvent effects and surface

science.   It is useful to note in this regard that GAMESS is a general purpose suite of

electronic structure and QM/MM methods (including open- and closed-shell Hartree-

Fock which has been essentially ignored here) that can be run on virtually any computer,

cluster, massively parallel system, or for that matter a desktop Mac or PC.  Indeed,

GAMESS is used at many universities as an educational tool, making use of its graphical

back end MacMolPlt113.  GAMESS and MacMolPlt can be downloaded at no cost from

www.msg.ameslab.gov, with only a simple license required.  A great many people from

essentially every region of the world have contributed to the development of GAMESS.

This is due in no small measure to the philosophy that has stood us in good stead for

more than two decades: Science is to be shared openly and freely, and the development of

computer codes should be driven by the science that the community wishes to

accomplish.  This approach to disseminating GAMESS will continue into the foreseeable

future.
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It is anticipated that several new features will be implemented into GAMESS in the near

future.  These include:

- Restricted open shell second order perturbation theory (ZAPT2) analytic

gradients

- Properties and gradients for the closed shell coupled cluster methods that are

already in GAMESS

- Parallel coupled cluster methods

- Derivative coupling at the MCSCF level of theory

- Determinant-based multi-reference perturbation theory

- Model core potentials with the correct nodal behavior

- Interfaces between MP2, CIS, MRMP2, CCSD(T), and EOM-CCSD(T) codes

with EFP, in order to facilitate the study of solvent effects on correlated

systems and in excited electronic states

- Molecular dynamics capability for both EFP1 and EFP2

- An interface between EFP and MM codes

As always, additional code developments will be driven by the interests of our many

colleagues who contribute to GAMESS and by the chemistry that we and our many users

wish to study.
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